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Abstract. In this paper the linear response theory is used to obtain the transfer matrix of the 
induced potential in a semiconductor superlattice system, in which the sub-band structure is 
taken into account. Using the transfer matrix to the Fibonacci superlattice, we calculate the 
spectrum of the intra-sub-band and inter-sub-band collective excitations in such a system. 
The scaling properties of the spectrum are analysed. 

Following the recent experimental discovery of the quasi-crystal phase in metallic alloys 
[l], there has been a regeneration of interest in studies of the physical properties of 
quasi-periodic systems in one dimension [2-81. More recently, Merlin et a1 [9] have 
succeeded in growing a quasi-periodic semiconductor superlattice, which provides a 
system for exploring the quasi-periodic properties. This system consists of two building 
blocks of different thicknesses a and b ,  arranged in a Fibonacci sequence. Each block is 
composed of GaAs and GaAlAs layers. If the GaAlAs region is doped with donors, a 
layer of quasi-two-dimensional electron gas can be produced in every block. Accord- 
ingly, the whole system can be thought of as an array of electron gas layers, separated 
by distances a or b ,  arranged in a Fibonacci sequence (we assume that the electrons are 
completely confined in the GaAs potential well). If there are F,, quas i -2~  electron gas 
layers, where F, is a Fibonacci number, i .e. ,  F, satisfies the recursion relation F,,,+, = 
F,,, + F,..l, with Fo = 1, F ,  = 1, we write the string of the layer separations as S,, and 
call it the mth generation of the Fibonacci sequence. This can be constructed recursively 
as S,  = 

Collective excitationsin periodic superlattices are well understood [ 101. In this system 
plasmons can propagate along the superlattice direction, and the allowed plasmon 
frequencies form bands characterised by Bloch wavevectors. However, due to the lack 
of periodic conditions the Bloch theorem is not applicable to the quasi-periodic system. 
Das Sarma et a1 [ 111 studied numerically the plasmon spectrum in a finite quasi-periodic 
superlattice system. The calculation of the collective excitations for an infinite system 
has been formulated by Hawrylak and Quinn [12,13], who supposed that the electrons 
are confined in the pure 2~ layers, i.e., the electron wavefunction is described by a 6- 
function, with the use of a Poisson equation and suitable boundary conditions. A transfer 
$ Present address: Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Chang Ning Road, 
Shanghai 200050, People’s Republic of China. 
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matrix for the induced potential in the system is obtained. However, neither Das Sarma 
eta1 nor Hawrylak et a1 took the sub-band structure into account, and the inter-sub-band 
plasmons cannot be given within their frameworks. In this paper, we use the linear 
response theory for the quasi-periodic superlattice system in which the electron 
wavefunction has a finite width, and obtain a transfer matrix for the induced potential 
propagating over the system. Therefore, together with a procedure similar to that of 
Hawrylak et ul, not only can the intra-sub-band excitation be obtained more precisely, 
but the inter-sub-band excitation can also be given. 

The model is shown in figure 1, where 1 is a layer index of the quasi-2~ electron gas 
(~DEG) layer, z1 is the centre of a ZDEG layer along the superlattice direction, and dl is the 
distance between the lth and (1 + 1)th layers. For convenience, we assume that the 
thicknesses of GaAs layers in all blocks are the same, so that the wavefunction for an 
electron with momentum k (in the x-y plane) in the nth sub-band of the lth layer is 

and its energy is 

where E, is the energy at the bottom of nth sub-band and m* is the effective electron 
mass. 

An external potential of the form 

uext(r, 2, t )  = Uext(q,  w, z )  ei(wf-q.r) (3) 

induces a change in the electron density, which in turn generates a Hartree potential UH 
(here we neglect the induced exchange-correlation potential). Then the total per- 
turbation potential 

U = uex t  + U H  (4) 

will have the same form as (3). The charge density 6n(q, U ,  z )  induced by the total 
potential U(q ,  U,  2) can be written as 

where 

and the polarisability I3 is 

The induced density 6 n ( q ,  w ,  z )  is related to the induced Hartree potential U H  by the 
Poisson equation 
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Figure 1. Model of a quasi-periodic semiconductor superlattice. Shaded areas are quantum 
wells arranged in a Fibonacci sequence, whose centres zI are separated by distance d, (a  or 
b).  zy and z; are two edges of the lth quantum well. 

Suppose z is taken to lie in the region with zero electron density (zf s z s z ! + ~ ,  see 
figure l), from equation (8) we have 

Defining aposition parameter z? , which can only take values in the electron layers (i.e., 
ze e z,? s z j ) ,  equation (9) can be rewritten as 

UH(q,  w ,  z {  s z e z ! + ~ )  = A,(z;") e-q('-';) + B,(z,+) eq('-';) (10) 

where 
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Although A,(zf ) and B, ( z? )  are defined in the Ith layer, they are not uniquely deter- 
mined by layer index I because of the appearance of their argument zf . To remove the 
dependence on zf , we define two new quantities Amn(I) and B,,,(l) 

2: 

ZP 

Amn(I) = 1 dzf  @,(z? - Z ~ ) @ ~ ( Z ?  - z , ) A , ( z f )  (13a) 

Since the wavefunction Qn(z - z,) is non-zero only for 2: < z < z : ,  we can replace z,? 
by z and the integrated area ( z : ,  2;) by (- x ,  x) in the above definitions, i.e., 
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On using (16), multiplying both sides of equation (20) by Q m ( z  - zl )Om8(z - z I ) ,  and 
integrating for z ,  equation (20) becomes 

ULmr(q ,  w )  = UE$(q, w )  +Amm,( / )  + Bmm,(l)  

+ C n n n , ( q ,  w>~in , (47  w ) ( V m n i ' , n n ' ( q )  - V m m , , n n , ( q ) )  (21) 
nn' 

where 

(22)  
2ne2 

E q  
Vmm8,nn8(q) = -11 d z d z '  e-SI2-" @ m  ( z > @ m , ( z ) @ n  ( z ' > @ n ,  (2'). 

If we put UgA/(q,  0) = 0, then the set of equations (17), (19) and (21) determines 
the collective excitation of the system. In the electric quantum limit ( i .e. ,  only the lowest 
sub-band is occupied by electrons), the set of the equations can be simplified as follows 

where 

The above set of equations is general no matter whether the system is periodic or not. 
In fact, for the periodic superlattice, we can write 

using Bloch's theorem and combining it with equations (23) to yield 

~Lo(q7 U >  = E X n o ( q ,  U> [ V m n ( q )  + S-  V m n ( q >  + S+ V n m ( q ) ~ u A o ( q >  0) (25a) 

S,(q ,  k )  = - I)-1 (25b) 

detidnm - X m o ( q ,  0) [ V n m ( q )  + S -  V n r n ( q )  + S+ V m n ( q ) I }  = 0. 

n 

The equation for determining the excitations can be written as 

(26) 

This is just the result obtained by Tselis and Quinn [lo]. 
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For the quasi-periodic superlattice, due to the lack of the periodic condition, the 
connection between ( A m o ( l  + l ) ,  B m O ( l  + 1)) and ( A m o ( l ) ,  B m o ( l ) )  can only be written 
via a transfer matrix TI 

where the diagonal approximation (i.e., neglecting the mixing between different exci- 
tations) is made. If setting n = 0 and V,  = VoO = 2ne2/&q, it is expected that ( 2 8 )  will 
reduce to the form of a transfer matrix for the pure ZDEG layer system obtained by 
Hawrylak et a1 [ 121. 

In equation ( 2 8 )  the quantity xmOVmm/[l - z m o ( V m m  - V m m ) ] ,  is defined in a quasi- 
ZDEG layer and is independent of layer separations, and therefore of the superlattice 
structure. Since the allowed energy values are determined by the condition that 

N 

1=0 

which only depends on the superlattice structure, remains finite when N - .  ? (see 
below), the allowed values of xmOVmm/[ 1 - xm0(  Vmm - V m m ) ]  are completely determined 
by the superlattice structure for a fixed wavevector q. If we define a quantity S ( q )  as 

which is related to TI by 

and write its allowed values as S ( q ,  k ) ,  where k is an index specifying the allowed values 
of S ( q ) ,  then the equation of the collective excitations can be given by 

Xmo(q7 m ) V m m ( q ) S ( q ,  k )  = 1 - X m o ( q ,  U> [ V m m ( q )  - V m m ( 4 ) I .  (31) 

The above procedures are performed on general systems, but if we recall the definition 
of the structure factor and the equation of collective excitations in the periodic super- 
lattice, we find that ( 2 9 )  is just the definition of a structure factor for the periodic system, 
and that equation (31) is also of the same form as that of the collective excitations in that 
system. The only difference lies in the allowed values of S ( q ) ,  i.e., S ( q ,  k ) ,  which can be 
determined by different conditions for the different systems. Therefore, S ( q )  can be 
regarded as the structure factor for an arbitrary system. 

Although the discussions are based on the random-phase approximation (RPA), they 
hold for any approximations provided that the effect of tunnelling between layers is 
negligible. This means that, for any approximation, there always exists a quantity (we 
call it a structure factor, S(q))  of the 2DEG layer, which may be different for the different 
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approximations but the same for the different superlattice structures. Its allowed values 
S ( q ,  k )  are uniquely determined by the superlattice structure. Thus the equations of the 
collective excitations, such as equation (31)  in the RPA treatment, are the same for the 
different superlattice systems. The only difference lies in S ( q ,  k )  which is determined by 
the corresponding equations for the different superlattice structures. Physically, this is 
understandable since the tunnelling effect is neglected, and the single-electron states 
and related quantities are not influenced by the superlattice structure, i.e. , are the same 
for all systems. 

The polarisability I ’ Innf(q, w )  is just one of these quantities, and its allowed values 
are determined by the superlattice structure, from which the energy spectrum can be 
obtained. Since the structure factor is only the combination of Ilnn8(q, w )  and some other 
~ D E G  layer quantities, the above conclusion is physically obvious. 

For the quasi-periodic system, the string of T, is arranged in a Fibonacci sequence. 
The allowed values of S ( q )  in equation (30) can be studied by the same method as that 
used by Kohmoto et a1 [ 3 ] ,  Ostlund and Pandit [7] and Hawrylak and Quinn [12],  i.e., 
by the rational approximation method. An mth rational approximation to a Fibonacci 
sequence consists of a periodic sequence of unit cells containing Fm matrices T obtained 
in the mth generation of a Fibonacci sequence. The allowed values of S ( q )  in mth rational 
approximation can therefore be determined by the equation 

F”, 

4 T r n T ,  sl. (32) I / = 1  I 
As shown in [ 3 ] ,  the quantity 

x,,, = 4Tr n TI 

satisfies the recursion relation 

F m  

l =  1 

X / + 1  = 2 X l X l - 1  - X / - 2 .  (33) 
The starting conditions are 

x1 = f Tr(T,) = cosh(qa) - S-’(q)  sinh(qa) 
x0 = 4 Tr(T,) = cosh(@) - S-’(q) sinh(qb) 

and x - ~  should be chosen as 

to give x 2  = &Tr(T,T,) from equation (33)  with x1 and xo as defined above. Then, from 
(32) we can obtain the allowed values for any rational approximations. 

In the long-wavelength approximation, we expandX,,(q, w )  to O(q2).  If the allowed 
values of the structure factor S ( q )  are obtained, equation (31) yields the intra-sub-band 
excitation energy 

X-1 = cosh[q(a - b)]  (34c) 

and the inter-sub-band excitation energy 
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Figure 2. Structure factor S(9) for qb = 1. The band structures form = 2 , 3 , 4 , 5  are shown, 
where m is the number of generations in the Fibonacci sequence. 

where 

Vm(q)  = Vmm(q) + [ S ( q )  - 1IVmm(q) (37) 
and a, is the electron density, wmo = ( E m  - Eo) /h ,  uF is the Fermi velocity. 

energy corresponding to a quantum well with an infinite potential barrier, that is, 

~ ~ ( 2 )  = m s i n [ ( m  + l ) n ( z / ~  + & ) I  
with the following parameters: E = 13.1, n, = 7.3 X lo1' cm-*, m* = 0 . 0 6 8 ~ ~  (mois the 
free-electron mass), L = 250 A, b = 500 A and a = b t  (t is the golden mean &( 1 + v.5)). 
For qb = 1, the bands of the quasi-periodic structure factor, the intra-sub-band exci- 
tation and the inter-sub-band excitation for various rational approximations in the 
Fibonacci sequence are plotted in figures 2 , 3  and 4,  respectively. 

The scaling of the spectrum can be studied using the map (equation (33))  and the 
starting condition (34).  Kohmoto and Oono [5] have discussed the scaling properties of 
the map (33) using the fixed-point analysis for the quasi-periodic potential Schrodinger 
equation. They rewrite the map (33) as a three-dimensional map M 

In performing the numerical calculation, we use the wavefunction and single-particle 

E m  = (h2/2mL2)(m + 1)2n2 

M ( x / , Y i , z / )  = (x l+l2Y/+l5z /+l )  = P / Y /  - z l , x / > Y / )  (38) 

xi+1 =x/+1 Y / + l  = X I  Z I + l  = X I - 1  (39) 

A 2  = x: + y:  + 2:  - 2 x / y / z /  - 1 (40) 

with 

and find an important conserved quantity A 2 ,  

which is uniquely determined by the quasi-periodic potential and is independent of the 
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Figure 3. The band structure of intra-sub-band excitation form = 2, 3,4,5. 
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Figure 4. The band structure of inter-sub-band excitation form = 2,3 ,4 ,5 .  

energy in their discussions. Kohmoto and Oono also find six fixed points of M 6 .  With 
the existence of the conserved quantity A 2 ,  the points obtained by successive iterations 
(38) are confined on a two-dimensional surface (manifold), which is uniquely determined 
by A2. For a given system, A 2  is definite and so is the manifold, so the starting points in 
their system constitute a line on the manifold naturally; and the points on the line near 
a fixed point are responsible for the scaling of the energy spectrum. 
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However, the case is different for the quasi-periodic superlattice, in which A 2  is a 
function of energy (or the structure factor) and wavevector; the starting points constitute 
a two-dimensional surface. Only those points on the surface with energies and wave- 
vectors satisfying relation (40) are on the manifold determined by the same equation, 
and form a crossed line of the surface and the manifold. Since two arbitrary points on 
the line have different wavevectors, then, strictly speaking, the conclusions of Kohmoto 
et al do not hold for the spectrum of the Fibonacci superlattice, which is calculated with 
a definite wavevector. However, only those points (we call them stable points) on the 
crossed line that are near to a fixed point are interesting in a discussion of the scaling of 
the spectrum. Hence we can treat the wavevectors of the points to be approximately the 
same qo value, and the qualitative conclusions then hold for the spectrum of our system 
with wavevector qo. Furthermore, since the wavevectors of the stable points are deter- 
mined by the given conserved quantity A*, which we can take to be arbitrary, the scaling 
properties studied by Kohmoto et a1 hold approximately for the energy spectrum of our 
system with an arbitrary wavevector. This means that the band structure of the spectrum 
exhibits an infinite number of very narrow bands as m + x, which have a self-similar 
Cantor set structure with the scaling. More detailed discussions of the scaling of the 
specrum will be given in the future. 

In conclusion, we have given a transfer matrix theory for studying the collective 
excitations in a quasi-periodic superlattice system, and obtained the energy spectrum of 
the intra-sub-band and the inter-sub-band charge density excitations. Experimentally, 
as proposed by Das Sarma et a1 [ 111 and Hawrylak and Quinn [ 12,131, these spectra can 
be detected by inelastic light scattering. We hope the present work will stimulate 
experiments to investigate the energy spectrum. 

Acknowledgment 

This work was supported by the Chinese National Science Foundation. 

References 

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Reo. Lett. 53 1951 
[2] Simon B 1982Adu. Appl. Math. 3 463 
[3] Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Reo. Lett. 50 1870 
[4] Kohmoto M 1983 Phys. Reu. Lett. 51 1198 
[5] Kohmoto M and Oono Y 1984 Phys. Lett. 102A 145 
[6] Ostlund S,  Pandit R, Rand D, Schellnhuber H and Siggia E D 1983 Phys. Reu. Lett. 50 1873 
[7] Ostlund S and Pandit R 1984 Phys. Reu. B 29 1394 
[8] Hosfstadter D R 1976 Phys. Rev. B 14 2239 
[9] Merlin R, Bajema K,  Clarke R, Juang F Y and Bjattacharya P K 1985 Phys. Reu. Lett. 55 1768 

‘101 Tselis A C and Quinn J J 1984 Phys. Reu. B 29 3318 
‘111 Das Sarma S, Kobayashi A and Prange R E 1986 Phys. Reo. Lett. 56 1280; Phys. Reu. B 34 5309 
’121 Hawrylak P and Quinn J J 1986 Phys. Reu. Lett. 57 380 
[13] Hawrylak P, Eliasson G and Quinn J J 1987 Phys. Reu. B 36 6501 


